

Department of Civil Engineering

CE8404 – CONCRETE TECHNOLOGY

UNIT III MCQ

- 1. The ______ compressive strength required from structural consideration.
 - a) Nominal
 - b) Minimum
 - c) Maximum
 - d) No

ANS: b) Minimum

- 2. The adequate workability necessary for _____ compaction with the compacting equipment available.
 - a) Half
 - b) Quarter
 - c) Full
 - d) Double

ANS: c) Full

- 3. _____ water-cement ratio content to give adequate durability for the particular site conditions.
 - a) Minimum
 - b) Nominal
 - c) .5
 - d) Maximum

ANS: d) Maximum

4. _____ cement content to avoid shrinkage cracking due to temperature cycle in mass concrete.

b) Nominal

c) .5

d) Maximum ANS: d) Maximum

- 5. _____ has designated the concrete mixes into a number of grades as M10, M15.
 - a) IS 456-2000
 - b) IS 456-2010

c) IS 513-1999d) IS 465-2000ANS: a) IS 456-2000

- 6. What is the approx. mix proportion for M10?
 a) 1:3:6
 b) 1:2:4
 c) 1:1.5:3
 d) 1:1:2
 ANS: a) 1:3:6
- 7. What is the approx. mix proportion for M15?
 a) 1:3:6
 b) 1:2:4
 c) 1:1.5:3
 - d) 1:1:2
 - ANS: b) 1:2:4
- 8. What is the approx. mix proportion for M20?
 - a) 1:3:6 b) 1:2:4 c) 1:1.5:3 d) 1:1:2 ANS: c) 1:1.5:3
- 9. What is the approx. mix proportion for M25?
 - a) 1:3:6
 b) 1:2:4
 c) 1:1.5:3
 d) 1:1:2
 ANS: d) 1:1:2
- 10. Maximum nominal size of aggregates to be used in concrete may be as large as possible within the limits prescribed by _____

a) IS 456-2000
b) IS 456-2010
c) IS 513-1999
d) IS 465-2000
ANS: a) IS 456-2000

- 11. Depending on the degree of workability and placing condition determine the _____
 - a) Slump value
 - b) The maximum size of aggregate
 - c) The amount of mixing water
 - d) The minimum water-cement ratio
 - ANS: a) Slump value
- 12. Depending on the economical availability and dimensions of the structure determine the
 - a) Slump value
 - b) The maximum size of aggregate
 - c) The amount of mixing water
 - d) The minimum water-cement ratio
 - ANS: b) The maximum size of aggregate
- 13. For the given slump and maximum size of coarse aggregate determine the
 - a) Slump value
 - b) The maximum size of aggregate
 - c) The amount of mixing water
 - d) The minimum water-cement ratio
 - ANS: c) The amount of mixing water
- 14. Determine the ______ either from strength considerations or from durability considerations.
 - a) Slump value
 - b) The maximum size of aggregate
 - c) The amount of mixing water
 - d) The minimum water-cement ratio
 - ANS: d) The minimum water-cement ratio
- 15. Determine the amount of cement per unit volume of concrete from ______
 - a) Slump value
 - b) The maximum size of aggregate
 - c) The amount of mixing water
 - d) The maximum size of aggregate and the amount of mixing water
 - ANS: d) The maximum size of aggregate and the amount of mixing water
- 16. This cement content should ______ the cement content required based on durability criteria.
 - a) Be more than
 - b) Be equal to
 - c) Be less than
 - d) Not be less than
 - ANS: d) Not be less than

17. The lower the w/c ratio ______ the strength of concrete.

- a) Higher
- b) Lower
- c) Poor
- d) Moderate
- ANS: a) Higher

18. The aim of the designer should always be to get concrete mixtures of optimum strength at ______ cement content and ______ workability.

- a) Maximum, Nonacceptable
- b) Minimum, Nonacceptable
- c) Maximum, acceptable
- d) Minimum, acceptable
- ANS: d) Minimum, acceptable
- 19. Maximum size of aggregates should not be larger than _

a) 1/5 the minimum dimension of structural members

- b) 1/4 the minimum dimension of structural members
- c) 1/3 the minimum dimension of structural members
- d) 1/6 the minimum dimension of structural member
- ANS: a) 1/5 the minimum dimension of structural members

20. Maximum size of aggregates should not be larger than _____

a) 1/3 the thickness of a slab

- b) 1/2 the thickness of a slab
- c) 1/1 the thickness of a slab
- d) 1/4 the thickness of a slab

ANS: a) 1/3 the thickness of a slab

- 21. According to IRC:15-2011, Characteristic Flexural Strength at 28 days is _____
 - a) 4 N/mm²

b) 4.5 N/mm²

c) 5 N/mm²

d) 3.5 N/mm^2

ANS: b) 4.5 N/mm^2

- **22.** According to IRC:15-2011 _____% Fly ash is required to be replaced with the total cementitious materials.
 - a) 15
 - b) 20

c) 25d) 30ANS: b) 20

23. According to IRC:15-2002 _____% Fly ash is required to be replaced with the total cementitious materials.

- a) 15
- b) 20
- c) 25
- d) 30

ANS: c) 25

24. According to IRC:15-2002, Maximum nominal size of aggregates is

a) 20 mm crushed aggregates

- b) 31.5 mm crushed aggregates
- c) 25 mm crushed aggregates
- d) 30.5 mm crushed aggregates

ANS: a) 20 mm crushed aggregates

25. According to IRC:15-2011, Maximum nominal size of aggregates is _____

a) 20 mm crushed aggregates

b) 31.5 mm crushed aggregates

- c) 25 mm crushed aggregates
- d) 30.5 mm crushed aggregates
- ANS: b) 31.5 mm crushed aggregates